This repository has been archived on 2024-06-20. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
coffee.pygments/tests/examplefiles/fstar/example.fst
Matthäus G. Chajdas 23d17d472b Update tests.
2022-06-19 10:06:12 +02:00

1416 lines
41 KiB
Text

(*
Copyright 2020 Microsoft Research
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*)
module Steel.Semantics.Hoare.MST
module P = FStar.Preorder
open FStar.Tactics
open NMST
(*
* This module provides a semantic model for a combined effect of
* divergence, state, and parallel composition of atomic actions.
*
* It is built over a monotonic state effect -- so that we can give
* lock semantics using monotonicity
*
* It also builds a generic separation-logic-style program logic
* for this effect, in a partial correctness setting.
* It is also be possible to give a variant of this semantics for
* total correctness. However, we specifically focus on partial correctness
* here so that this semantics can be instantiated with lock operations,
* which may deadlock. See ParTot.fst for a total-correctness variant of
* these semantics.
*
* The program logic is specified in the Hoare-style pre- and postconditions
*)
/// Disabling projectors because we don't use them and they increase the typechecking time
#push-options "--fuel 0 --ifuel 2 --z3rlimit 20 --print_implicits --print_universes \
--using_facts_from 'Prims FStar.Pervasives FStar.Preorder MST NMST Steel.Semantics.Hoare.MST'"
(**** Begin state defn ****)
/// We start by defining some basic notions for a commutative monoid.
///
/// We could reuse FStar.Algebra.CommMonoid, but this style with
/// quanitifers was more convenient for the proof done here.
let symmetry #a (equals: a -> a -> prop) =
forall x y. {:pattern (x `equals` y)}
x `equals` y ==> y `equals` x // Test
let transitive #a (equals:a -> a -> prop) =
forall x y z. x `equals` y /\ y `equals` z ==> x `equals` z
let associative #a (equals: a -> a -> prop) (f: a -> a -> a)=
forall x y z.
f x (f y z) `equals` f (f x y) z
let commutative #a (equals: a -> a -> prop) (f: a -> a -> a) =
forall x y.{:pattern f x y}
f x y `equals` f y x
let is_unit #a (x:a) (equals: a -> a -> prop) (f:a -> a -> a) =
forall y. {:pattern f x y \/ f y x}
f x y `equals` y /\
f y x `equals` y
let equals_ext #a (equals:a -> a -> prop) (f:a -> a -> a) =
forall x1 x2 y. x1 `equals` x2 ==> f x1 y `equals` f x2 y
let fp_heap_0
(#heap:Type)
(#hprop:Type)
(interp:hprop -> heap -> prop)
(pre:hprop)
=
h:heap{interp pre h}
let depends_only_on_0
(#heap:Type)
(#hprop:Type)
(interp:hprop -> heap -> prop)
(disjoint: heap -> heap -> prop)
(join: (h0:heap -> h1:heap{disjoint h0 h1} -> heap))
(q:heap -> prop) (fp: hprop)
=
forall (h0:fp_heap_0 interp fp) (h1:heap{disjoint h0 h1}). q h0 <==> q (join h0 h1)
let fp_prop_0
(#heap:Type)
(#hprop:Type)
(interp:hprop -> heap -> prop)
(disjoint: heap -> heap -> prop)
(join: (h0:heap -> h1:heap{disjoint h0 h1} -> heap))
(fp:hprop)
=
p:(heap -> prop){p `(depends_only_on_0 interp disjoint join)` fp}
noeq
type st0 = {
mem:Type u#2;
core:mem -> mem;
locks_preorder:P.preorder mem;
hprop:Type u#2;
locks_invariant: mem -> hprop;
disjoint: mem -> mem -> prop;
join: h0:mem -> h1:mem{disjoint h0 h1} -> mem;
interp: hprop -> mem -> prop;
emp:hprop;
star: hprop -> hprop -> hprop;
equals: hprop -> hprop -> prop;
}
/// disjointness is symmetric
let disjoint_sym (st:st0) =
forall h0 h1. st.disjoint h0 h1 <==> st.disjoint h1 h0
let disjoint_join (st:st0) =
forall m0 m1 m2.
st.disjoint m1 m2 /\
st.disjoint m0 (st.join m1 m2) ==>
st.disjoint m0 m1 /\
st.disjoint m0 m2 /\
st.disjoint (st.join m0 m1) m2 /\
st.disjoint (st.join m0 m2) m1
let join_commutative (st:st0 { disjoint_sym st }) =
forall m0 m1.
st.disjoint m0 m1 ==>
st.join m0 m1 == st.join m1 m0
let join_associative (st:st0{disjoint_join st})=
forall m0 m1 m2.
st.disjoint m1 m2 /\
st.disjoint m0 (st.join m1 m2) ==>
st.join m0 (st.join m1 m2) == st.join (st.join m0 m1) m2
////////////////////////////////////////////////////////////////////////////////
let interp_extensionality #r #s (equals:r -> r -> prop) (f:r -> s -> prop) =
forall x y h. {:pattern equals x y; f x h} equals x y /\ f x h ==> f y h
let affine (st:st0) =
forall r0 r1 s. {:pattern (st.interp (r0 `st.star` r1) s) }
st.interp (r0 `st.star` r1) s ==> st.interp r0 s
////////////////////////////////////////////////////////////////////////////////
let depends_only_on (#st:st0) (q:st.mem -> prop) (fp: st.hprop) =
depends_only_on_0 st.interp st.disjoint st.join q fp
let fp_prop (#st:st0) (fp:st.hprop) =
fp_prop_0 st.interp st.disjoint st.join fp
let lemma_weaken_depends_only_on
(#st:st0{affine st})
(fp0 fp1:st.hprop)
(q:fp_prop fp0)
: Lemma (q `depends_only_on` (fp0 `st.star` fp1))
=
()
let st_laws (st:st0) =
(* standard laws about the equality relation *)
symmetry st.equals /\
transitive st.equals /\
interp_extensionality st.equals st.interp /\
(* standard laws for star forming a CM *)
associative st.equals st.star /\
commutative st.equals st.star /\
is_unit st.emp st.equals st.star /\
equals_ext st.equals st.star /\
(* We're working in an affine interpretation of SL *)
affine st /\
(* laws about disjoint and join *)
disjoint_sym st /\
disjoint_join st /\
join_commutative st /\
join_associative st
let st = s:st0 { st_laws s }
(**** End state defn ****)
(**** Begin expects, provides, requires, and ensures defns ****)
/// expects (the heap assertion expected by a computation) is simply an st.hprop
///
/// provides, or the post heap assertion, is a st.hprop on [a]-typed result
type post_t (st:st) (a:Type) = a -> st.hprop
/// requires is a heap predicate that depends only on a pre heap assertion
/// (where the notion of `depends only on` is defined above as part of the state definition)
///
/// we call the type l_pre for logical precondition
let l_pre (#st:st) (pre:st.hprop) = fp_prop pre
/// ensures is a 2-state postcondition of type heap -> a -> heap -> prop
///
/// To define ensures, we need a notion of depends_only_on_2
///
/// Essentially, in the first heap argument, postconditions depend only on the expects hprop
/// and in the second heap argument, postconditions depend only on the provides hprop
///
/// Also note that the support for depends_only_on_2 is not required from the underlying memory model
let depends_only_on_0_2
(#a:Type)
(#heap:Type)
(#hprop:Type)
(interp:hprop -> heap -> prop)
(disjoint:heap -> heap -> prop)
(join:(h0:heap -> h1:heap{disjoint h0 h1} -> heap))
(q:heap -> a -> heap -> prop) (fp_pre:hprop) (fp_post:a -> hprop)
= //can join any disjoint heap to the pre-heap and q is still valid
(forall x (h_pre:fp_heap_0 interp fp_pre) h_post (h:heap{disjoint h_pre h}).
q h_pre x h_post <==> q (join h_pre h) x h_post) /\
//can join any disjoint heap to the post-heap and q is still valid
(forall x h_pre (h_post:fp_heap_0 interp (fp_post x)) (h:heap{disjoint h_post h}).
q h_pre x h_post <==> q h_pre x (join h_post h))
/// Abbreviations for two-state depends
let fp_prop_0_2
(#a:Type)
(#heap #hprop:Type)
(interp:hprop -> heap -> prop)
(disjoint:heap -> heap -> prop)
(join:(h0:heap -> h1:heap{disjoint h0 h1} -> heap))
(fp_pre:hprop)
(fp_post:a -> hprop)
=
q:(heap -> a -> heap -> prop){depends_only_on_0_2 interp disjoint join q fp_pre fp_post}
let depends_only_on2
(#st:st0)
(#a:Type)
(q:st.mem -> a -> st.mem -> prop)
(fp_pre:st.hprop)
(fp_post:a -> st.hprop)
=
depends_only_on_0_2 st.interp st.disjoint st.join q fp_pre fp_post
let fp_prop2 (#st:st0) (#a:Type) (fp_pre:st.hprop) (fp_post:a -> st.hprop) =
q:(st.mem -> a -> st.mem -> prop){depends_only_on2 q fp_pre fp_post}
/// Finally the type of 2-state postconditions
let l_post (#st:st) (#a:Type) (pre:st.hprop) (post:post_t st a) = fp_prop2 pre post
(**** End expects, provides, requires,
and ensures defns ****)
effect Mst (a:Type) (#st:st) (req:st.mem -> Type0) (ens:st.mem -> a -> st.mem -> Type0) =
NMSTATE a st.mem st.locks_preorder req ens
(**** Begin interface of actions ****)
/// Actions are essentially state transformers that preserve frames
let preserves_frame (#st:st) (pre post:st.hprop) (m0 m1:st.mem) =
forall (frame:st.hprop).
st.interp ((pre `st.star` frame) `st.star` (st.locks_invariant m0)) m0 ==>
(st.interp ((post `st.star` frame) `st.star` (st.locks_invariant m1)) m1 /\
(forall (f_frame:fp_prop frame). f_frame (st.core m0) == f_frame (st.core m1)))
let action_t
(#st:st)
(#a:Type)
(pre:st.hprop)
(post:post_t st a)
(lpre:l_pre pre)
(lpost:l_post pre post)
=
unit ->
Mst a
(requires fun m0 ->
st.interp (pre `st.star` st.locks_invariant m0) m0 /\
lpre (st.core m0))
(ensures fun m0 x m1 ->
st.interp ((post x) `st.star` st.locks_invariant m1) m1 /\
lpost (st.core m0) x (st.core m1) /\
preserves_frame pre (post x) m0 m1)
(**** End interface of actions ****)
(**** Begin definition of the computation AST ****)
/// Gadgets for building lpre- and lpostconditions for various nodes
/// Return node is parametric in provides and ensures
let return_lpre (#st:st) (#a:Type) (#post:post_t st a) (x:a) (lpost:l_post (post x) post)
: l_pre (post x)
=
fun h -> lpost h x h
let frame_lpre (#st:st) (#pre:st.hprop) (lpre:l_pre pre) (#frame:st.hprop) (f_frame:fp_prop frame)
: l_pre (pre `st.star` frame)
=
fun h -> lpre h /\ f_frame h
let frame_lpost
(#st:st)
(#a:Type)
(#pre:st.hprop)
(#post:post_t st a)
(lpre:l_pre pre)
(lpost:l_post pre post)
(#frame:st.hprop)
(f_frame:fp_prop frame)
: l_post (pre `st.star` frame) (fun x -> post x `st.star` frame)
=
fun h0 x h1 -> lpre h0 /\ lpost h0 x h1 /\ f_frame h1
/// The bind rule bakes in weakening of requires / ensures
let bind_lpre
(#st:st)
(#a:Type)
(#pre:st.hprop)
(#post_a:post_t st a)
(lpre_a:l_pre pre)
(lpost_a:l_post pre post_a)
(lpre_b:(x:a -> l_pre (post_a x)))
: l_pre pre
=
fun h -> lpre_a h /\ (forall (x:a) h1. lpost_a h x h1 ==> lpre_b x h1)
let bind_lpost
(#st:st)
(#a:Type)
(#pre:st.hprop)
(#post_a:post_t st a)
(lpre_a:l_pre pre)
(lpost_a:l_post pre post_a)
(#b:Type)
(#post_b:post_t st b)
(lpost_b:(x:a -> l_post (post_a x) post_b))
: l_post pre post_b
=
fun h0 y h2 -> lpre_a h0 /\ (exists x h1. lpost_a h0 x h1 /\ (lpost_b x) h1 y h2)
/// Parallel composition is pointwise
let par_lpre
(#st:st)
(#preL:st.hprop)
(lpreL:l_pre preL)
(#preR:st.hprop)
(lpreR:l_pre preR)
: l_pre (preL `st.star` preR)
=
fun h -> lpreL h /\ lpreR h
let par_lpost
(#st:st)
(#aL:Type)
(#preL:st.hprop)
(#postL:post_t st aL)
(lpreL:l_pre preL)
(lpostL:l_post preL postL)
(#aR:Type)
(#preR:st.hprop)
(#postR:post_t st aR)
(lpreR:l_pre preR)
(lpostR:l_post preR postR)
: l_post (preL `st.star` preR) (fun (xL, xR) -> postL xL `st.star` postR xR)
=
fun h0 (xL, xR) h1 -> lpreL h0 /\ lpreR h0 /\ lpostL h0 xL h1 /\ lpostR h0 xR h1
let weaker_pre (#st:st) (pre:st.hprop) (next_pre:st.hprop) =
forall (h:st.mem) (frame:st.hprop).
st.interp (pre `st.star` frame) h ==>
st.interp (next_pre `st.star` frame) h
let stronger_post (#st:st) (#a:Type u#a) (post next_post:post_t st a) =
forall (x:a) (h:st.mem) (frame:st.hprop).
st.interp (next_post x `st.star` frame) h ==>
st.interp (post x `st.star` frame) h
let weakening_ok
(#st:st)
(#a:Type u#a)
(#pre:st.hprop)
(#post:post_t st a)
(lpre:l_pre pre)
(lpost:l_post pre post)
(#wpre:st.hprop)
(#wpost:post_t st a)
(wlpre:l_pre wpre)
(wlpost:l_post wpre wpost)
=
weaker_pre wpre pre /\
stronger_post wpost post /\
(forall h. wlpre h ==> lpre h) /\
(forall h0 x h1. lpost h0 x h1 ==> wlpost h0 x h1)
/// Setting the flag just to reduce the time to typecheck the type m
#push-options "--__temp_no_proj Steel.Semantics.Hoare.MST"
noeq
type m (st:st) :
a:Type u#a ->
pre:st.hprop ->
post:post_t st a ->
l_pre pre ->
l_post pre post -> Type
=
| Ret:
#a:Type u#a ->
post:post_t st a ->
x:a ->
lpost:l_post (post x) post ->
m st a (post x) post (return_lpre #_ #_ #post x lpost) lpost
| Bind:
#a:Type u#a ->
#pre:st.hprop ->
#post_a:post_t st a ->
#lpre_a:l_pre pre ->
#lpost_a:l_post pre post_a ->
#b:Type u#a ->
#post_b:post_t st b ->
#lpre_b:(x:a -> l_pre (post_a x)) ->
#lpost_b:(x:a -> l_post (post_a x) post_b) ->
f:m st a pre post_a lpre_a lpost_a ->
g:(x:a -> Dv (m st b (post_a x) post_b (lpre_b x) (lpost_b x))) ->
m st b pre post_b
(bind_lpre lpre_a lpost_a lpre_b)
(bind_lpost lpre_a lpost_a lpost_b)
| Act:
#a:Type u#a ->
#pre:st.hprop ->
#post:post_t st a ->
#lpre:l_pre pre ->
#lpost:l_post pre post ->
f:action_t #st #a pre post lpre lpost ->
m st a pre post lpre lpost
| Frame:
#a:Type ->
#pre:st.hprop ->
#post:post_t st a ->
#lpre:l_pre pre ->
#lpost:l_post pre post ->
f:m st a pre post lpre lpost ->
frame:st.hprop ->
f_frame:fp_prop frame ->
m st a (pre `st.star` frame) (fun x -> post x `st.star` frame)
(frame_lpre lpre f_frame)
(frame_lpost lpre lpost f_frame)
| Par:
#aL:Type u#a ->
#preL:st.hprop ->
#postL:post_t st aL ->
#lpreL:l_pre preL ->
#lpostL:l_post preL postL ->
mL:m st aL preL postL lpreL lpostL ->
#aR:Type u#a ->
#preR:st.hprop ->
#postR:post_t st aR ->
#lpreR:l_pre preR ->
#lpostR:l_post preR postR ->
mR:m st aR preR postR lpreR lpostR ->
m st (aL & aR) (preL `st.star` preR) (fun (xL, xR) -> postL xL `st.star` postR xR)
(par_lpre lpreL lpreR)
(par_lpost lpreL lpostL lpreR lpostR)
| Weaken:
#a:Type u#a ->
#pre:st.hprop ->
#post:post_t st a ->
#lpre:l_pre pre ->
#lpost:l_post pre post ->
#wpre:st.hprop ->
#wpost:post_t st a ->
wlpre:l_pre wpre ->
wlpost:l_post wpre wpost ->
_:squash (weakening_ok lpre lpost wlpre wlpost) ->
m st a pre post lpre lpost ->
m st a wpre wpost wlpre wlpost
#pop-options
(**** End definition of the computation AST ****)
(**** Stepping relation ****)
/// All steps preserve frames
noeq
type step_result (st:st) (a:Type u#a) =
| Step:
next_pre:st.hprop ->
next_post:post_t st a ->
lpre:l_pre next_pre ->
lpost:l_post next_pre next_post ->
m st a next_pre next_post lpre lpost ->
step_result st a
(**** Type of the single-step interpreter ****)
/// Interpreter is setup as a Div function from computation trees to computation trees
///
/// While the requires for the Div is standard (that the expects hprop holds and requires is valid),
/// the ensures is interesting
///
/// As the computation evolves, the requires and ensures associated with the computation graph nodes
/// also evolve
/// But they evolve systematically: preconditions become weaker and postconditions become stronger
///
/// Consider { req } c | st { ens } ~~> { req1 } c1 | st1 { ens1 }
///
/// Then, req st ==> req1 st1 /\
/// (forall x st_final. ens1 st1 x st_final ==> ens st x st_final)
unfold
let step_req
(#st:st)
(#a:Type u#a)
(#pre:st.hprop)
(#post:post_t st a)
(#lpre:l_pre pre)
(#lpost:l_post pre post)
(f:m st a pre post lpre lpost)
: st.mem -> Type0
=
fun m0 ->
st.interp (pre `st.star` st.locks_invariant m0) m0 /\
lpre (st.core m0)
let weaker_lpre
(#st:st)
(#pre:st.hprop)
(lpre:l_pre pre)
(#next_pre:st.hprop)
(next_lpre:l_pre next_pre)
(m0 m1:st.mem)
=
lpre (st.core m0) ==> next_lpre (st.core m1)
let stronger_lpost
(#st:st)
(#a:Type u#a)
(#pre:st.hprop)
(#post:post_t st a)
(lpost:l_post pre post)
(#next_pre:st.hprop)
#next_post
(next_lpost:l_post next_pre next_post)
(m0 m1:st.mem)
=
forall (x:a) (h_final:st.mem).
next_lpost (st.core m1) x h_final ==>
lpost (st.core m0) x h_final
unfold
let step_ens
(#st:st)
(#a:Type u#a)
(#pre:st.hprop)
(#post:post_t st a)
(#lpre:l_pre pre)
(#lpost:l_post pre post)
(f:m st a pre post lpre lpost)
: st.mem -> step_result st a -> st.mem -> Type0
=
fun m0 r m1 ->
let Step next_pre next_post next_lpre next_lpost _ = r in
st.interp (next_pre `st.star` st.locks_invariant m1) m1 /\
stronger_post post next_post /\
next_lpre (st.core m1) /\
preserves_frame pre next_pre m0 m1 /\
weaker_lpre lpre next_lpre m0 m1 /\
stronger_lpost lpost next_lpost m0 m1
/// The type of the stepping function
type step_t =
#st:st ->
#a:Type u#a ->
#pre:st.hprop ->
#post:post_t st a ->
#lpre:l_pre pre ->
#lpost:l_post pre post ->
f:m st a pre post lpre lpost ->
Mst (step_result st a) (step_req f) (step_ens f)
(**** Auxiliary lemmas ****)
/// Some AC lemmas on `st.star`
let apply_assoc (#st:st) (p q r:st.hprop)
: Lemma (st.equals (p `st.star` (q `st.star` r)) ((p `st.star` q) `st.star` r))
=
()
let equals_ext_left (#st:st) (p q r:st.hprop)
: Lemma
(requires p `st.equals` q)
(ensures (p `st.star` r) `st.equals` (q `st.star` r))
=
()
let equals_ext_right (#st:st) (p q r:st.hprop)
: Lemma
(requires q `st.equals` r)
(ensures (p `st.star` q) `st.equals` (p `st.star` r))
=
calc (st.equals) {
p `st.star` q;
(st.equals) { }
q `st.star` p;
(st.equals) { }
r `st.star` p;
(st.equals) { }
p `st.star` r;
}
let commute_star_right (#st:st) (p q r:st.hprop)
: Lemma
((p `st.star` (q `st.star` r)) `st.equals`
(p `st.star` (r `st.star` q)))
=
calc (st.equals) {
p `st.star` (q `st.star` r);
(st.equals) { equals_ext_right p (q `st.star` r) (r `st.star` q) }
p `st.star` (r `st.star` q);
}
let assoc_star_right (#st:st) (p q r s:st.hprop)
: Lemma
((p `st.star` ((q `st.star` r) `st.star` s)) `st.equals`
(p `st.star` (q `st.star` (r `st.star` s))))
=
calc (st.equals) {
p `st.star` ((q `st.star` r) `st.star` s);
(st.equals) { equals_ext_right p ((q `st.star` r) `st.star` s)
(q `st.star` (r `st.star` s)) }
p `st.star` (q `st.star` (r `st.star` s));
}
let commute_assoc_star_right (#st:st) (p q r s:st.hprop)
: Lemma
((p `st.star` ((q `st.star` r) `st.star` s)) `st.equals`
(p `st.star` (r `st.star` (q `st.star` s))))
=
calc (st.equals) {
p `st.star` ((q `st.star` r) `st.star` s);
(st.equals) { equals_ext_right p
((q `st.star` r) `st.star` s)
((r `st.star` q) `st.star` s) }
p `st.star` ((r `st.star` q) `st.star` s);
(st.equals) { assoc_star_right p r q s }
p `st.star` (r `st.star` (q `st.star` s));
}
/// Apply extensionality manually, control proofs
let apply_interp_ext (#st:st) (p q:st.hprop) (m:st.mem)
: Lemma
(requires (st.interp p m /\ p `st.equals` q))
(ensures st.interp q m)
=
()
let weaken_fp_prop (#st:st) (frame frame':st.hprop) (m0 m1:st.mem)
: Lemma
(requires
forall (f_frame:fp_prop (frame `st.star` frame')).
f_frame (st.core m0) == f_frame (st.core m1))
(ensures
forall (f_frame:fp_prop frame').
f_frame (st.core m0) == f_frame (st.core m1))
=
()
let depends_only_on_commutes_with_weaker
(#st:st)
(q:st.mem -> prop)
(fp:st.hprop)
(fp_next:st.hprop)
: Lemma
(requires depends_only_on q fp /\ weaker_pre fp_next fp)
(ensures depends_only_on q fp_next)
=
assert (forall (h0:fp_heap_0 st.interp fp_next). st.interp (fp_next `st.star` st.emp) h0)
let depends_only_on2_commutes_with_weaker
(#st:st)
(#a:Type)
(q:st.mem -> a -> st.mem -> prop)
(fp:st.hprop)
(fp_next:st.hprop)
(fp_post:a -> st.hprop)
: Lemma
(requires depends_only_on2 q fp fp_post /\ weaker_pre fp_next fp)
(ensures depends_only_on2 q fp_next fp_post)
=
assert (forall (h0:fp_heap_0 st.interp fp_next). st.interp (fp_next `st.star` st.emp) h0)
/// Lemmas about preserves_frame
let preserves_frame_trans
(#st:st)
(hp1 hp2 hp3:st.hprop)
(m1 m2 m3:st.mem)
: Lemma
(requires preserves_frame hp1 hp2 m1 m2 /\ preserves_frame hp2 hp3 m2 m3)
(ensures preserves_frame hp1 hp3 m1 m3)
=
()
#push-options "--warn_error -271"
let preserves_frame_stronger_post
(#st:st)
(#a:Type)
(pre:st.hprop)
(post post_s:post_t st a)
(x:a)
(m1 m2:st.mem)
: Lemma
(requires preserves_frame pre (post_s x) m1 m2 /\ stronger_post post post_s)
(ensures preserves_frame pre (post x) m1 m2)
=
let aux (frame:st.hprop)
: Lemma
(requires st.interp (st.locks_invariant m1 `st.star` (pre `st.star` frame)) m1)
(ensures
st.interp (st.locks_invariant m2 `st.star` (post x `st.star` frame)) m2 /\
(forall (f_frame:fp_prop frame). f_frame (st.core m1) == f_frame (st.core m2)))
[SMTPat ()]
=
assert (st.interp (st.locks_invariant m2 `st.star` (post_s x `st.star` frame)) m2);
calc (st.equals) {
st.locks_invariant m2 `st.star` (post_s x `st.star` frame);
(st.equals) { }
(st.locks_invariant m2 `st.star` post_s x) `st.star` frame;
(st.equals) { }
(post_s x `st.star` st.locks_invariant m2) `st.star` frame;
(st.equals) { }
post_s x `st.star` (st.locks_invariant m2 `st.star` frame);
};
assert (st.interp (post_s x `st.star` (st.locks_invariant m2 `st.star` frame)) m2);
assert (st.interp (post x `st.star` (st.locks_invariant m2 `st.star` frame)) m2);
calc (st.equals) {
post x `st.star` (st.locks_invariant m2 `st.star` frame);
(st.equals) { }
(post x `st.star` st.locks_invariant m2) `st.star` frame;
(st.equals) { }
(st.locks_invariant m2 `st.star` post x) `st.star` frame;
(st.equals) { apply_assoc (st.locks_invariant m2) (post x) frame }
st.locks_invariant m2 `st.star` (post x `st.star` frame);
};
assert (st.interp (st.locks_invariant m2 `st.star` (post x `st.star` frame)) m2)
in
()
#pop-options
#push-options "--z3rlimit 40 --warn_error -271"
let preserves_frame_star (#st:st) (pre post:st.hprop) (m0 m1:st.mem) (frame:st.hprop)
: Lemma
(requires preserves_frame pre post m0 m1)
(ensures preserves_frame (pre `st.star` frame) (post `st.star` frame) m0 m1)
=
let aux (frame':st.hprop)
: Lemma
(requires
st.interp (st.locks_invariant m0 `st.star` ((pre `st.star` frame) `st.star` frame')) m0)
(ensures
st.interp (st.locks_invariant m1 `st.star`
((post `st.star` frame) `st.star` frame')) m1 /\
(forall (f_frame:fp_prop frame'). f_frame (st.core m0) == f_frame (st.core m1)))
[SMTPat ()]
=
assoc_star_right (st.locks_invariant m0) pre frame frame';
apply_interp_ext
(st.locks_invariant m0 `st.star` ((pre `st.star` frame) `st.star` frame'))
(st.locks_invariant m0 `st.star` (pre `st.star` (frame `st.star` frame')))
m0;
assoc_star_right (st.locks_invariant m1) post frame frame';
apply_interp_ext
(st.locks_invariant m1 `st.star` (post `st.star` (frame `st.star` frame')))
(st.locks_invariant m1 `st.star` ((post `st.star` frame) `st.star` frame'))
m1;
weaken_fp_prop frame frame' m0 m1
in
()
let preserves_frame_star_left (#st:st) (pre post:st.hprop) (m0 m1:st.mem) (frame:st.hprop)
: Lemma
(requires preserves_frame pre post m0 m1)
(ensures preserves_frame (frame `st.star` pre) (frame `st.star` post) m0 m1)
=
let aux (frame':st.hprop)
: Lemma
(requires
st.interp (st.locks_invariant m0 `st.star` ((frame `st.star` pre) `st.star` frame')) m0)
(ensures
st.interp (st.locks_invariant m1 `st.star`
((frame `st.star` post) `st.star` frame')) m1 /\
(forall (f_frame:fp_prop frame'). f_frame (st.core m0) == f_frame (st.core m1)))
[SMTPat ()]
=
commute_assoc_star_right (st.locks_invariant m0) frame pre frame';
apply_interp_ext
(st.locks_invariant m0 `st.star` ((frame `st.star` pre) `st.star` frame'))
(st.locks_invariant m0 `st.star` (pre `st.star` (frame `st.star` frame')))
m0;
commute_assoc_star_right (st.locks_invariant m1) frame post frame';
apply_interp_ext
(st.locks_invariant m1 `st.star` (post `st.star` (frame `st.star` frame')))
(st.locks_invariant m1 `st.star` ((frame `st.star` post) `st.star` frame'))
m1;
weaken_fp_prop frame frame' m0 m1
in
()
#pop-options
/// Lemma frame_post_for_par is used in the par proof
///
/// E.g. in the par rule, when L takes a step, we can frame the requires of R
/// by using the preserves_frame property of the stepping relation
///
/// However we also need to frame the ensures of R, for establishing stronger_post
///
/// Basically, we need:
///
/// forall x h_final. postR prev_state x h_final <==> postR next_state x h_final
///
/// (the proof only requires the reverse implication, but we can prove iff)
///
/// To prove this, we rely on the framing of all frame fp props provides by the stepping relation
///
/// To use it, we instantiate the fp prop with inst_heap_prop_for_par
let inst_heap_prop_for_par
(#st:st)
(#a:Type)
(#pre:st.hprop)
(#post:post_t st a)
(lpost:l_post pre post)
(state:st.mem)
: fp_prop pre
=
fun h ->
forall x final_state.
lpost h x final_state <==>
lpost (st.core state) x final_state
let frame_post_for_par_tautology
(#st:st)
(#a:Type)
(#pre_f:st.hprop)
(#post_f:post_t st a)
(lpost_f:l_post pre_f post_f)
(m0:st.mem)
: Lemma (inst_heap_prop_for_par lpost_f m0 (st.core m0))
=
()
let frame_post_for_par_aux
(#st:st)
(pre_s post_s:st.hprop) (m0 m1:st.mem)
(#a:Type) (#pre_f:st.hprop) (#post_f:post_t st a) (lpost_f:l_post pre_f post_f)
: Lemma
(requires
preserves_frame pre_s post_s m0 m1 /\
st.interp ((pre_s `st.star` pre_f) `st.star` st.locks_invariant m0) m0)
(ensures
inst_heap_prop_for_par lpost_f m0 (st.core m0) <==>
inst_heap_prop_for_par lpost_f m0 (st.core m1))
=
()
let frame_post_for_par
(#st:st)
(pre_s post_s:st.hprop)
(m0 m1:st.mem)
(#a:Type)
(#pre_f:st.hprop)
(#post_f:post_t st a)
(lpre_f:l_pre pre_f)
(lpost_f:l_post pre_f post_f)
: Lemma
(requires
preserves_frame pre_s post_s m0 m1 /\
st.interp ((pre_s `st.star` pre_f) `st.star` st.locks_invariant m0) m0)
(ensures
(lpre_f (st.core m0) <==> lpre_f (st.core m1)) /\
(forall (x:a) (final_state:st.mem).
lpost_f (st.core m0) x final_state <==>
lpost_f (st.core m1) x final_state))
=
frame_post_for_par_tautology lpost_f m0;
frame_post_for_par_aux pre_s post_s m0 m1 lpost_f
/// Finally lemmas for proving that in the par rules preconditions get weaker
/// and postconditions get stronger
let par_weaker_lpre_and_stronger_lpost_l
(#st:st)
(#preL:st.hprop)
(lpreL:l_pre preL)
(#aL:Type)
(#postL:post_t st aL)
(lpostL:l_post preL postL)
(#next_preL:st.hprop)
(#next_postL:post_t st aL)
(next_lpreL:l_pre next_preL)
(next_lpostL:l_post next_preL next_postL)
(#preR:st.hprop)
(lpreR:l_pre preR)
(#aR:Type)
(#postR:post_t st aR)
(lpostR:l_post preR postR)
(state next_state:st.mem)
: Lemma
(requires
weaker_lpre lpreL next_lpreL state next_state /\
stronger_lpost lpostL next_lpostL state next_state /\
preserves_frame preL next_preL state next_state /\
lpreL (st.core state) /\
lpreR (st.core state) /\
st.interp ((preL `st.star` preR) `st.star` st.locks_invariant state) state)
(ensures
weaker_lpre
(par_lpre lpreL lpreR)
(par_lpre next_lpreL lpreR)
state next_state /\
stronger_lpost
(par_lpost lpreL lpostL lpreR lpostR)
(par_lpost next_lpreL next_lpostL lpreR lpostR)
state next_state)
=
frame_post_for_par preL next_preL state next_state lpreR lpostR;
assert (weaker_lpre (par_lpre lpreL lpreR) (par_lpre next_lpreL lpreR) state next_state) by
(norm [delta_only [`%weaker_lpre; `%par_lpre] ])
let par_weaker_lpre_and_stronger_lpost_r
(#st:st)
(#preL:st.hprop)
(lpreL:l_pre preL)
(#aL:Type)
(#postL:post_t st aL)
(lpostL:l_post preL postL)
(#preR:st.hprop)
(lpreR:l_pre preR)
(#aR:Type)
(#postR:post_t st aR)
(lpostR:l_post preR postR)
(#next_preR:st.hprop)
(#next_postR:post_t st aR)
(next_lpreR:l_pre next_preR)
(next_lpostR:l_post next_preR next_postR)
(state next_state:st.mem)
: Lemma
(requires
weaker_lpre lpreR next_lpreR state next_state /\
stronger_lpost lpostR next_lpostR state next_state /\
preserves_frame preR next_preR state next_state /\
lpreR (st.core state) /\
lpreL (st.core state) /\
st.interp ((preL `st.star` preR) `st.star` st.locks_invariant state) state)
(ensures
st.interp ((preL `st.star` next_preR) `st.star` st.locks_invariant next_state) next_state /\
weaker_lpre
(par_lpre lpreL lpreR)
(par_lpre lpreL next_lpreR)
state next_state /\
stronger_lpost
(par_lpost lpreL lpostL lpreR lpostR)
(par_lpost lpreL lpostL next_lpreR next_lpostR)
state next_state)
=
commute_star_right (st.locks_invariant state) preL preR;
apply_interp_ext
(st.locks_invariant state `st.star` (preL `st.star` preR))
(st.locks_invariant state `st.star` (preR `st.star` preL))
state;
frame_post_for_par preR next_preR state next_state lpreL lpostL;
assert (weaker_lpre (par_lpre lpreL lpreR) (par_lpre lpreL next_lpreR) state next_state) by
(norm [delta_only [`%weaker_lpre; `%par_lpre] ]);
commute_star_right (st.locks_invariant next_state) next_preR preL;
apply_interp_ext
(st.locks_invariant next_state `st.star` (next_preR `st.star` preL))
(st.locks_invariant next_state `st.star` (preL `st.star` next_preR))
next_state
#push-options "--warn_error -271"
let stronger_post_par_r
(#st:st)
(#aL #aR:Type u#a)
(postL:post_t st aL)
(postR:post_t st aR)
(next_postR:post_t st aR)
: Lemma
(requires stronger_post postR next_postR)
(ensures
forall xL xR frame h.
st.interp ((postL xL `st.star` next_postR xR) `st.star` frame) h ==>
st.interp ((postL xL `st.star` postR xR) `st.star` frame) h)
=
let aux xL xR frame h
: Lemma
(requires st.interp ((postL xL `st.star` next_postR xR) `st.star` frame) h)
(ensures st.interp ((postL xL `st.star` postR xR) `st.star` frame) h)
[SMTPat ()]
=
calc (st.equals) {
(postL xL `st.star` next_postR xR) `st.star` frame;
(st.equals) { }
(next_postR xR `st.star` postL xL) `st.star` frame;
(st.equals) { }
next_postR xR `st.star` (postL xL `st.star` frame);
};
assert (st.interp (next_postR xR `st.star` (postL xL `st.star` frame)) h);
assert (st.interp (postR xR `st.star` (postL xL `st.star` frame)) h);
calc (st.equals) {
postR xR `st.star` (postL xL `st.star` frame);
(st.equals) { }
(postR xR `st.star` postL xL) `st.star` frame;
(st.equals) { }
(postL xL `st.star` postR xR) `st.star` frame;
}
in
()
#pop-options
(**** Begin stepping functions ****)
let step_ret
(#st:st)
(#a:Type u#a)
(#pre:st.hprop)
(#post:post_t st a)
(#lpre:l_pre pre)
(#lpost:l_post pre post)
(f:m st a pre post lpre lpost{Ret? f})
: Mst (step_result st a) (step_req f) (step_ens f)
=
NMSTATE?.reflect (fun (_, n) ->
let Ret p x lp = f in
Step (p x) p lpre lpost f, n)
let lpost_ret_act
(#st:st)
(#a:Type)
(#pre:st.hprop)
(#post:post_t st a)
(lpost:l_post pre post)
(x:a)
(state:st.mem)
: l_post (post x) post
=
fun _ x h1 -> lpost (st.core state) x h1
let step_act
(#st:st)
(#a:Type u#a)
(#pre:st.hprop)
(#post:post_t st a)
(#lpre:l_pre pre)
(#lpost:l_post pre post)
(f:m st a pre post lpre lpost{Act? f})
: Mst (step_result st a) (step_req f) (step_ens f)
=
let m0 = get () in
let Act #_ #_ #_ #_ #_ #_ f = f in
let x = f () in
let lpost : l_post (post x) post = lpost_ret_act lpost x m0 in
Step (post x) post (fun h -> lpost h x h) lpost (Ret post x lpost)
module M = MST
let step_bind_ret_aux
(#st:st)
(#a:Type)
(#pre:st.hprop)
(#post:post_t st a)
(#lpre:l_pre pre)
(#lpost:l_post pre post)
(f:m st a pre post lpre lpost{Bind? f /\ Ret? (Bind?.f f)})
: M.MSTATE (step_result st a) st.mem st.locks_preorder (step_req f) (step_ens f)
=
M.MSTATE?.reflect (fun m0 ->
match f with
| Bind #_ #_ #_ #_ #_ #_ #_ #post_b #lpre_b #lpost_b (Ret p x _) g ->
Step (p x) post_b (lpre_b x) (lpost_b x) (g x), m0)
let step_bind_ret
(#st:st)
(#a:Type)
(#pre:st.hprop)
(#post:post_t st a)
(#lpre:l_pre pre)
(#lpost:l_post pre post)
(f:m st a pre post lpre lpost{Bind? f /\ Ret? (Bind?.f f)})
: Mst (step_result st a) (step_req f) (step_ens f)
=
NMSTATE?.reflect (fun (_, n) -> step_bind_ret_aux f, n)
#push-options "--z3rlimit 40"
let step_bind
(#st:st)
(#a:Type)
(#pre:st.hprop)
(#post:post_t st a)
(#lpre:l_pre pre)
(#lpost:l_post pre post)
(f:m st a pre post lpre lpost{Bind? f})
(step:step_t)
: Mst (step_result st a) (step_req f) (step_ens f)
=
match f with
| Bind (Ret _ _ _) _ -> step_bind_ret f
| Bind #_ #b #_ #post_a #_ #_ #_ #post_b #lpre_b #lpost_b f g ->
let Step next_pre next_post next_lpre next_lpost f = step f in
let lpre_b : (x:b -> l_pre (next_post x)) =
fun x ->
depends_only_on_commutes_with_weaker (lpre_b x) (post_a x) (next_post x);
lpre_b x in
let lpost_b : (x:b -> l_post (next_post x) post_b) =
fun x ->
depends_only_on2_commutes_with_weaker (lpost_b x) (post_a x) (next_post x) post_b;
lpost_b x in
let g : (x:b -> Dv (m st _ (next_post x) post_b (lpre_b x) (lpost_b x))) =
fun x ->
Weaken (lpre_b x) (lpost_b x) () (g x) in
let m1 = get () in
assert ((bind_lpre next_lpre next_lpost lpre_b) (st.core m1))
by norm ([delta_only [`%bind_lpre]]);
Step next_pre post_b
(bind_lpre next_lpre next_lpost lpre_b)
(bind_lpost next_lpre next_lpost lpost_b)
(Bind f g)
#pop-options
let step_frame_ret_aux
(#st:st)
(#a:Type)
(#pre:st.hprop)
(#p:post_t st a)
(#lpre:l_pre pre)
(#lpost:l_post pre p)
(f:m st a pre p lpre lpost{Frame? f /\ Ret? (Frame?.f f)})
: M.MSTATE (step_result st a) st.mem st.locks_preorder (step_req f) (step_ens f)
=
M.MSTATE?.reflect (fun m0 ->
match f with
| Frame (Ret p x lp) frame f_frame ->
Step (p x `st.star` frame) (fun x -> p x `st.star` frame)
(fun h -> lpost h x h)
lpost
(Ret (fun x -> p x `st.star` frame) x lpost), m0)
let step_frame_ret
(#st:st)
(#a:Type)
(#pre:st.hprop)
(#p:post_t st a)
(#lpre:l_pre pre)
(#lpost:l_post pre p)
(f:m st a pre p lpre lpost{Frame? f /\ Ret? (Frame?.f f)})
: Mst (step_result st a) (step_req f) (step_ens f)
=
NMSTATE?.reflect (fun (_, n) -> step_frame_ret_aux f, n)
let step_frame
(#st:st)
(#a:Type)
(#pre:st.hprop)
(#p:post_t st a)
(#lpre:l_pre pre)
(#lpost:l_post pre p)
(f:m st a pre p lpre lpost{Frame? f})
(step:step_t)
: Mst (step_result st a) (step_req f) (step_ens f)
=
match f with
| Frame (Ret p x lp) frame f_frame -> step_frame_ret f
| Frame #_ #_ #f_pre #_ #_ #_ f frame f_frame ->
let m0 = get () in
let Step next_fpre next_fpost next_flpre next_flpost f = step f in
let m1 = get () in
preserves_frame_star f_pre next_fpre m0 m1 frame;
assert ((frame_lpre next_flpre f_frame) (st.core m1))
by (norm [delta_only [`%frame_lpre]]);
Step (next_fpre `st.star` frame) (fun x -> next_fpost x `st.star` frame)
(frame_lpre next_flpre f_frame)
(frame_lpost next_flpre next_flpost f_frame)
(Frame f frame f_frame)
let step_par_ret_aux
(#st:st)
(#a:Type)
(#pre:st.hprop)
(#post:post_t st a)
(#lpre:l_pre pre)
(#lpost:l_post pre post)
(f:m st a pre post lpre lpost{Par? f /\ Ret? (Par?.mL f) /\ Ret? (Par?.mR f)})
: M.MSTATE (step_result st a) st.mem st.locks_preorder (step_req f) (step_ens f)
=
M.MSTATE?.reflect (fun m0 ->
match f with
| Par #_ #aL #_ #_ #_ #_ (Ret pL xL lpL) #aR #_ #_ #_ #_ (Ret pR xR lpR) ->
let lpost : l_post
#st #(aL & aR)
(pL xL `st.star` pR xR)
(fun (xL, xR) -> pL xL `st.star` pR xR)
=
fun h0 (xL, xR) h1 -> lpL h0 xL h1 /\ lpR h0 xR h1
in
Step (pL xL `st.star` pR xR) (fun (xL, xR) -> pL xL `st.star` pR xR)
(fun h -> lpL h xL h /\ lpR h xR h)
lpost
(Ret (fun (xL, xR) -> pL xL `st.star` pR xR) (xL, xR) lpost), m0)
let step_par_ret
(#st:st)
(#a:Type)
(#pre:st.hprop)
(#post:post_t st a)
(#lpre:l_pre pre)
(#lpost:l_post pre post)
(f:m st a pre post lpre lpost{Par? f /\ Ret? (Par?.mL f) /\ Ret? (Par?.mR f)})
: Mst (step_result st a) (step_req f) (step_ens f)
=
NMSTATE?.reflect (fun (_, n) -> step_par_ret_aux f, n)
let step_par
(#st:st)
(#a:Type)
(#pre:st.hprop)
(#post:post_t st a)
(#lpre:l_pre pre)
(#lpost:l_post pre post)
(f:m st a pre post lpre lpost{Par? f})
(step:step_t)
: Mst (step_result st a) (step_req f) (step_ens f)
=
match f with
| Par (Ret _ _ _) (Ret _ _ _) -> step_par_ret f
| Par #_ #aL #preL #postL #lpreL #lpostL mL #aR #preR #postR #lpreR #lpostR mR ->
let b = sample () in
if b then begin
let m0 = get () in
let Step next_preL next_postL next_lpreL next_lpostL mL = step mL in
let m1 = get () in
preserves_frame_star preL next_preL m0 m1 preR;
par_weaker_lpre_and_stronger_lpost_l lpreL lpostL next_lpreL next_lpostL lpreR lpostR m0 m1;
let next_post = (fun (xL, xR) -> next_postL xL `st.star` postR xR) in
assert (stronger_post post next_post) by (norm [delta_only [`%stronger_post]]);
Step (next_preL `st.star` preR) next_post
(par_lpre next_lpreL lpreR)
(par_lpost next_lpreL next_lpostL lpreR lpostR)
(Par mL mR)
end
else begin
let m0 = get () in
let Step next_preR next_postR next_lpreR next_lpostR mR = step mR in
let m1 = get () in
preserves_frame_star_left preR next_preR m0 m1 preL;
par_weaker_lpre_and_stronger_lpost_r lpreL lpostL lpreR lpostR next_lpreR next_lpostR m0 m1;
let next_post = (fun (xL, xR) -> postL xL `st.star` next_postR xR) in
stronger_post_par_r postL postR next_postR;
Step (preL `st.star` next_preR) next_post
(par_lpre lpreL next_lpreR)
(par_lpost lpreL lpostL next_lpreR next_lpostR)
(Par mL mR)
end
let step_weaken
(#st:st)
(#a:Type u#a)
(#pre:st.hprop)
(#post:post_t st a)
(#lpre:l_pre pre)
(#lpost:l_post pre post)
(f:m st a pre post lpre lpost{Weaken? f})
: Mst (step_result st a) (step_req f) (step_ens f)
=
NMSTATE?.reflect (fun (_, n) ->
let Weaken #_ #_ #pre #post #lpre #lpost #_ #_ #_ #_ #_ f = f in
Step pre post lpre lpost f, n)
/// Step function
let rec step
(#st:st)
(#a:Type u#a)
(#pre:st.hprop)
(#post:post_t st a)
(#lpre:l_pre pre)
(#lpost:l_post pre post)
(f:m st a pre post lpre lpost)
: Mst (step_result st a)
(step_req f)
(step_ens f)
=
match f with
| Ret _ _ _ -> step_ret f
| Bind _ _ -> step_bind f step
| Act _ -> step_act f
| Frame _ _ _ -> step_frame f step
| Par _ _ -> step_par f step
| Weaken _ _ _ _ -> step_weaken f
let rec run
(#st:st)
(#a:Type u#a)
(#pre:st.hprop)
(#post:post_t st a)
(#lpre:l_pre pre)
(#lpost:l_post pre post)
(f:m st a pre post lpre lpost)
: Mst a
(requires fun m0 ->
st.interp (pre `st.star` st.locks_invariant m0) m0 /\
lpre (st.core m0))
(ensures fun m0 x m1 ->
st.interp (post x `st.star` st.locks_invariant m1) m1 /\
lpost (st.core m0) x (st.core m1) /\
preserves_frame pre (post x) m0 m1)
=
match f with
| Ret _ x _ -> x
| _ ->
let m0 = get () in
let Step new_pre new_post _ _ f = step f in
let m1 = get () in
let x = run f in
let m2 = get () in
preserves_frame_trans pre new_pre (new_post x) m0 m1 m2;
preserves_frame_stronger_post pre post new_post x m0 m2;
x