This repository has been archived on 2024-06-20. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
coffee.pygments/tests/examplefiles/gap-repl/euclidean.tst
Max Horn f4976545a1
Add GAP console session mode (#2211)
* Add GAP console session mode

This is also appropriate for GAP .tst files.

Add `analyse_text` methods for `ScilabLexer` and `GAPConsoleLexer` to
distinguish Scilab and GAP .tst files

* Use explicit name for 'keepends' argument to splitlines
2022-08-19 22:19:14 +02:00

60 lines
1.9 KiB
Scilab

#@local checkEuclideanRing
gap> START_TEST("euclidean.tst");
# test consistency of EuclideanDegree, EuclideanQuotient, EuclideanRemainder,
# and QuotientRemainder for some ring and elements of it
gap> checkEuclideanRing :=
> function(R, colls...)
> local coll1, coll2, a, b, deg_b, deg_r, q, r, qr;
> if Length(colls) >= 1 then coll1:=colls[1];
> elif Size(R) <= 100 then coll1 := R;
> else coll1 := List([1..100],i->Random(R));
> fi;
> if Length(colls) >= 2 then coll2:=colls[2];
> elif Size(R) <= 100 then coll2 := R;
> else coll2 := List([1..100],i->Random(R));
> fi;
> for b in coll1 do
> if IsZero(b) then continue; fi;
> deg_b := EuclideanDegree(R, b);
> for a in coll2 do
> q := EuclideanQuotient(R, a, b); Assert(0, q in R);
> r := EuclideanRemainder(R, a, b); Assert(0, r in R);
> if a <> q*b + r then Error("a <> q*b + r for ", [R,a,b]); fi;
> deg_r := EuclideanDegree(R, r);
> if not IsZero(r) and deg_r >= deg_b then Error("Euclidean degree did not decrease for ",[R,a,b]); fi;
> qr := QuotientRemainder(R, a, b);
> if qr <> [q, r] then Error("QuotientRemainder inconsistent for ", [R,a,b]); fi;
> od;
> od;
> return true;
> end;;
# rings in characteristic 0
gap> checkEuclideanRing(Integers,[-100..100],[-100..100]);
true
gap> checkEuclideanRing(Rationals);
true
gap> checkEuclideanRing(GaussianIntegers);
true
gap> checkEuclideanRing(GaussianRationals);
true
# finite fields
gap> ForAll(Filtered([2..50], IsPrimePowerInt), q->checkEuclideanRing(GF(q)));
true
# ZmodnZ
gap> ForAll([1..50], m -> checkEuclideanRing(Integers mod m));
true
gap> checkEuclideanRing(Integers mod ((2*3*5)^2));
true
gap> checkEuclideanRing(Integers mod ((2*3*5)^3));
true
gap> checkEuclideanRing(Integers mod ((2*3*5*7)^2));
true
gap> checkEuclideanRing(Integers mod ((2*3*5*7)^3));
true
#
gap> STOP_TEST( "euclidean.tst", 1);