This repository has been archived on 2024-06-20. You can view files and clone it, but you cannot make any changes to it's state, such as pushing and creating new issues, pull requests or comments.
coffee.pygments/tests/examplefiles/isabelle/example_unicode.thy
Dacit dab512c997
Added cartouche handling for Isabelle lexer (#2159)
Co-authored-by: Fabian Huch <huch@in.tum.de>
2022-06-28 12:55:24 +02:00

1027 lines
29 KiB
Text
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

(* from Isabelle2021-1 src/HOL/Power.thy; BSD license *)
(* Title: HOL/Power.thy
Author: Lawrence C Paulson, Cambridge University Computer Laboratory
Copyright 1997 University of Cambridge
*)
section Exponentiation
theory Power
imports Num
begin
subsection Powers for Arbitrary Monoids
class power = one + times
begin
primrec power :: "'a ⇒ nat ⇒ 'a" (infixr "^" 80)
where
power_0: "a ^ 0 = 1"
| power_Suc: "a ^ Suc n = a * a ^ n"
notation (latex output)
power ("(_⇗_⇖)" [1000] 1000)
text Special syntax for squares.
abbreviation power2 :: "'a ⇒ 'a" ("(_⇧2)" [1000] 999)
where "x⇧2 ≡ x ^ 2"
end
context
includes lifting_syntax
begin
lemma power_transfer [transfer_rule]:
(R ===> (=) ===> R) (^) (^)
if [transfer_rule]: R 1 1
(R ===> R ===> R) (*) (*)
for R :: 'a::power ⇒ 'b::power ⇒ bool
by (simp only: power_def [abs_def]) transfer_prover
end
context monoid_mult
begin
subclass power .
lemma power_one [simp]: "1 ^ n = 1"
by (induct n) simp_all
lemma power_one_right [simp]: "a ^ 1 = a"
by simp
lemma power_Suc0_right [simp]: "a ^ Suc 0 = a"
by simp
lemma power_commutes: "a ^ n * a = a * a ^ n"
by (induct n) (simp_all add: mult.assoc)
lemma power_Suc2: "a ^ Suc n = a ^ n * a"
by (simp add: power_commutes)
lemma power_add: "a ^ (m + n) = a ^ m * a ^ n"
by (induct m) (simp_all add: algebra_simps)
lemma power_mult: "a ^ (m * n) = (a ^ m) ^ n"
by (induct n) (simp_all add: power_add)
lemma power_even_eq: "a ^ (2 * n) = (a ^ n)⇧2"
by (subst mult.commute) (simp add: power_mult)
lemma power_odd_eq: "a ^ Suc (2*n) = a * (a ^ n)⇧2"
by (simp add: power_even_eq)
lemma power_numeral_even: "z ^ numeral (Num.Bit0 w) = (let w = z ^ (numeral w) in w * w)"
by (simp only: numeral_Bit0 power_add Let_def)
lemma power_numeral_odd: "z ^ numeral (Num.Bit1 w) = (let w = z ^ (numeral w) in z * w * w)"
by (simp only: numeral_Bit1 One_nat_def add_Suc_right add_0_right
power_Suc power_add Let_def mult.assoc)
lemma power2_eq_square: "a⇧2 = a * a"
by (simp add: numeral_2_eq_2)
lemma power3_eq_cube: "a ^ 3 = a * a * a"
by (simp add: numeral_3_eq_3 mult.assoc)
lemma power4_eq_xxxx: "x^4 = x * x * x * x"
by (simp add: mult.assoc power_numeral_even)
lemma funpow_times_power: "(times x ^^ f x) = times (x ^ f x)"
proof (induct "f x" arbitrary: f)
case 0
then show ?case by (simp add: fun_eq_iff)
next
case (Suc n)
define g where "g x = f x - 1" for x
with Suc have "n = g x" by simp
with Suc have "times x ^^ g x = times (x ^ g x)" by simp
moreover from Suc g_def have "f x = g x + 1" by simp
ultimately show ?case
by (simp add: power_add funpow_add fun_eq_iff mult.assoc)
qed
lemma power_commuting_commutes:
assumes "x * y = y * x"
shows "x ^ n * y = y * x ^n"
proof (induct n)
case 0
then show ?case by simp
next
case (Suc n)
have "x ^ Suc n * y = x ^ n * y * x"
by (subst power_Suc2) (simp add: assms ac_simps)
also have "… = y * x ^ Suc n"
by (simp only: Suc power_Suc2) (simp add: ac_simps)
finally show ?case .
qed
lemma power_minus_mult: "0 < n ⟹ a ^ (n - 1) * a = a ^ n"
by (simp add: power_commutes split: nat_diff_split)
lemma left_right_inverse_power:
assumes "x * y = 1"
shows "x ^ n * y ^ n = 1"
proof (induct n)
case (Suc n)
moreover have "x ^ Suc n * y ^ Suc n = x^n * (x * y) * y^n"
by (simp add: power_Suc2[symmetric] mult.assoc[symmetric])
ultimately show ?case by (simp add: assms)
qed simp
end
context comm_monoid_mult
begin
lemma power_mult_distrib [algebra_simps, algebra_split_simps, field_simps, field_split_simps, divide_simps]:
"(a * b) ^ n = (a ^ n) * (b ^ n)"
by (induction n) (simp_all add: ac_simps)
end
text Extract constant factors from powers.
declare power_mult_distrib [where a = "numeral w" for w, simp]
declare power_mult_distrib [where b = "numeral w" for w, simp]
lemma power_add_numeral [simp]: "a^numeral m * a^numeral n = a^numeral (m + n)"
for a :: "'a::monoid_mult"
by (simp add: power_add [symmetric])
lemma power_add_numeral2 [simp]: "a^numeral m * (a^numeral n * b) = a^numeral (m + n) * b"
for a :: "'a::monoid_mult"
by (simp add: mult.assoc [symmetric])
lemma power_mult_numeral [simp]: "(a^numeral m)^numeral n = a^numeral (m * n)"
for a :: "'a::monoid_mult"
by (simp only: numeral_mult power_mult)
context semiring_numeral
begin
lemma numeral_sqr: "numeral (Num.sqr k) = numeral k * numeral k"
by (simp only: sqr_conv_mult numeral_mult)
lemma numeral_pow: "numeral (Num.pow k l) = numeral k ^ numeral l"
by (induct l)
(simp_all only: numeral_class.numeral.simps pow.simps
numeral_sqr numeral_mult power_add power_one_right)
lemma power_numeral [simp]: "numeral k ^ numeral l = numeral (Num.pow k l)"
by (rule numeral_pow [symmetric])
end
context semiring_1
begin
lemma of_nat_power [simp]: "of_nat (m ^ n) = of_nat m ^ n"
by (induct n) simp_all
lemma zero_power: "0 < n ⟹ 0 ^ n = 0"
by (cases n) simp_all
lemma power_zero_numeral [simp]: "0 ^ numeral k = 0"
by (simp add: numeral_eq_Suc)
lemma zero_power2: "0⇧2 = 0" (* delete? *)
by (rule power_zero_numeral)
lemma one_power2: "1⇧2 = 1" (* delete? *)
by (rule power_one)
lemma power_0_Suc [simp]: "0 ^ Suc n = 0"
by simp
text It looks plausible as a simprule, but its effect can be strange.
lemma power_0_left: "0 ^ n = (if n = 0 then 1 else 0)"
by (cases n) simp_all
end
context semiring_char_0 begin
lemma numeral_power_eq_of_nat_cancel_iff [simp]:
"numeral x ^ n = of_nat y ⟷ numeral x ^ n = y"
using of_nat_eq_iff by fastforce
lemma real_of_nat_eq_numeral_power_cancel_iff [simp]:
"of_nat y = numeral x ^ n ⟷ y = numeral x ^ n"
using numeral_power_eq_of_nat_cancel_iff [of x n y] by (metis (mono_tags))
lemma of_nat_eq_of_nat_power_cancel_iff[simp]: "(of_nat b) ^ w = of_nat x ⟷ b ^ w = x"
by (metis of_nat_power of_nat_eq_iff)
lemma of_nat_power_eq_of_nat_cancel_iff[simp]: "of_nat x = (of_nat b) ^ w ⟷ x = b ^ w"
by (metis of_nat_eq_of_nat_power_cancel_iff)
end
context comm_semiring_1
begin
text The divides relation.
lemma le_imp_power_dvd:
assumes "m ≤ n"
shows "a ^ m dvd a ^ n"
proof
from assms have "a ^ n = a ^ (m + (n - m))" by simp
also have "… = a ^ m * a ^ (n - m)" by (rule power_add)
finally show "a ^ n = a ^ m * a ^ (n - m)" .
qed
lemma power_le_dvd: "a ^ n dvd b ⟹ m ≤ n ⟹ a ^ m dvd b"
by (rule dvd_trans [OF le_imp_power_dvd])
lemma dvd_power_same: "x dvd y ⟹ x ^ n dvd y ^ n"
by (induct n) (auto simp add: mult_dvd_mono)
lemma dvd_power_le: "x dvd y ⟹ m ≥ n ⟹ x ^ n dvd y ^ m"
by (rule power_le_dvd [OF dvd_power_same])
lemma dvd_power [simp]:
fixes n :: nat
assumes "n > 0 x = 1"
shows "x dvd (x ^ n)"
using assms
proof
assume "0 < n"
then have "x ^ n = x ^ Suc (n - 1)" by simp
then show "x dvd (x ^ n)" by simp
next
assume "x = 1"
then show "x dvd (x ^ n)" by simp
qed
end
context semiring_1_no_zero_divisors
begin
subclass power .
lemma power_eq_0_iff [simp]: "a ^ n = 0 ⟷ a = 0 ∧ n > 0"
by (induct n) auto
lemma power_not_zero: "a ≠ 0 ⟹ a ^ n ≠ 0"
by (induct n) auto
lemma zero_eq_power2 [simp]: "a⇧2 = 0 ⟷ a = 0"
unfolding power2_eq_square by simp
end
context ring_1
begin
lemma power_minus: "(- a) ^ n = (- 1) ^ n * a ^ n"
proof (induct n)
case 0
show ?case by simp
next
case (Suc n)
then show ?case
by (simp del: power_Suc add: power_Suc2 mult.assoc)
qed
lemma power_minus': "NO_MATCH 1 x ⟹ (-x) ^ n = (-1)^n * x ^ n"
by (rule power_minus)
lemma power_minus_Bit0: "(- x) ^ numeral (Num.Bit0 k) = x ^ numeral (Num.Bit0 k)"
by (induct k, simp_all only: numeral_class.numeral.simps power_add
power_one_right mult_minus_left mult_minus_right minus_minus)
lemma power_minus_Bit1: "(- x) ^ numeral (Num.Bit1 k) = - (x ^ numeral (Num.Bit1 k))"
by (simp only: eval_nat_numeral(3) power_Suc power_minus_Bit0 mult_minus_left)
lemma power2_minus [simp]: "(- a)⇧2 = a⇧2"
by (fact power_minus_Bit0)
lemma power_minus1_even [simp]: "(- 1) ^ (2*n) = 1"
proof (induct n)
case 0
show ?case by simp
next
case (Suc n)
then show ?case by (simp add: power_add power2_eq_square)
qed
lemma power_minus1_odd: "(- 1) ^ Suc (2*n) = -1"
by simp
lemma power_minus_even [simp]: "(-a) ^ (2*n) = a ^ (2*n)"
by (simp add: power_minus [of a])
end
context ring_1_no_zero_divisors
begin
lemma power2_eq_1_iff: "a⇧2 = 1 ⟷ a = 1 a = - 1"
using square_eq_1_iff [of a] by (simp add: power2_eq_square)
end
context idom
begin
lemma power2_eq_iff: "x⇧2 = y⇧2 ⟷ x = y x = - y"
unfolding power2_eq_square by (rule square_eq_iff)
end
context semidom_divide
begin
lemma power_diff:
"a ^ (m - n) = (a ^ m) div (a ^ n)" if "a ≠ 0" and "n ≤ m"
proof -
define q where "q = m - n"
with n ≤ m have "m = q + n" by simp
with a ≠ 0 q_def show ?thesis
by (simp add: power_add)
qed
end
context algebraic_semidom
begin
lemma div_power: "b dvd a ⟹ (a div b) ^ n = a ^ n div b ^ n"
by (induct n) (simp_all add: div_mult_div_if_dvd dvd_power_same)
lemma is_unit_power_iff: "is_unit (a ^ n) ⟷ is_unit a n = 0"
by (induct n) (auto simp add: is_unit_mult_iff)
lemma dvd_power_iff:
assumes "x ≠ 0"
shows "x ^ m dvd x ^ n ⟷ is_unit x m ≤ n"
proof
assume *: "x ^ m dvd x ^ n"
{
assume "m > n"
note *
also have "x ^ n = x ^ n * 1" by simp
also from m > n have "m = n + (m - n)" by simp
also have "x ^ … = x ^ n * x ^ (m - n)" by (rule power_add)
finally have "x ^ (m - n) dvd 1"
by (subst (asm) dvd_times_left_cancel_iff) (insert assms, simp_all)
with m > n have "is_unit x" by (simp add: is_unit_power_iff)
}
thus "is_unit x m ≤ n" by force
qed (auto intro: unit_imp_dvd simp: is_unit_power_iff le_imp_power_dvd)
end
context normalization_semidom_multiplicative
begin
lemma normalize_power: "normalize (a ^ n) = normalize a ^ n"
by (induct n) (simp_all add: normalize_mult)
lemma unit_factor_power: "unit_factor (a ^ n) = unit_factor a ^ n"
by (induct n) (simp_all add: unit_factor_mult)
end
context division_ring
begin
text Perhaps these should be simprules.
lemma power_inverse [field_simps, field_split_simps, divide_simps]: "inverse a ^ n = inverse (a ^ n)"
proof (cases "a = 0")
case True
then show ?thesis by (simp add: power_0_left)
next
case False
then have "inverse (a ^ n) = inverse a ^ n"
by (induct n) (simp_all add: nonzero_inverse_mult_distrib power_commutes)
then show ?thesis by simp
qed
lemma power_one_over [field_simps, field_split_simps, divide_simps]: "(1 / a) ^ n = 1 / a ^ n"
using power_inverse [of a] by (simp add: divide_inverse)
end
context field
begin
lemma power_divide [field_simps, field_split_simps, divide_simps]: "(a / b) ^ n = a ^ n / b ^ n"
by (induct n) simp_all
end
subsection Exponentiation on ordered types
context linordered_semidom
begin
lemma zero_less_power [simp]: "0 < a ⟹ 0 < a ^ n"
by (induct n) simp_all
lemma zero_le_power [simp]: "0 ≤ a ⟹ 0 ≤ a ^ n"
by (induct n) simp_all
lemma power_mono: "a ≤ b ⟹ 0 ≤ a ⟹ a ^ n ≤ b ^ n"
by (induct n) (auto intro: mult_mono order_trans [of 0 a b])
lemma one_le_power [simp]: "1 ≤ a ⟹ 1 ≤ a ^ n"
using power_mono [of 1 a n] by simp
lemma power_le_one: "0 ≤ a ⟹ a ≤ 1 ⟹ a ^ n ≤ 1"
using power_mono [of a 1 n] by simp
lemma power_gt1_lemma:
assumes gt1: "1 < a"
shows "1 < a * a ^ n"
proof -
from gt1 have "0 ≤ a"
by (fact order_trans [OF zero_le_one less_imp_le])
from gt1 have "1 * 1 < a * 1" by simp
also from gt1 have "… ≤ a * a ^ n"
by (simp only: mult_mono 0 ≤ a one_le_power order_less_imp_le zero_le_one order_refl)
finally show ?thesis by simp
qed
lemma power_gt1: "1 < a ⟹ 1 < a ^ Suc n"
by (simp add: power_gt1_lemma)
lemma one_less_power [simp]: "1 < a ⟹ 0 < n ⟹ 1 < a ^ n"
by (cases n) (simp_all add: power_gt1_lemma)
lemma power_le_imp_le_exp:
assumes gt1: "1 < a"
shows "a ^ m ≤ a ^ n ⟹ m ≤ n"
proof (induct m arbitrary: n)
case 0
show ?case by simp
next
case (Suc m)
show ?case
proof (cases n)
case 0
with Suc have "a * a ^ m ≤ 1" by simp
with gt1 show ?thesis
by (force simp only: power_gt1_lemma not_less [symmetric])
next
case (Suc n)
with Suc.prems Suc.hyps show ?thesis
by (force dest: mult_left_le_imp_le simp add: less_trans [OF zero_less_one gt1])
qed
qed
lemma of_nat_zero_less_power_iff [simp]: "of_nat x ^ n > 0 ⟷ x > 0 n = 0"
by (induct n) auto
text Surely we can strengthen this? It holds for 0<a<1 too.
lemma power_inject_exp [simp]:
a ^ m = a ^ n ⟷ m = n if 1 < a
using that by (force simp add: order_class.order.antisym power_le_imp_le_exp)
text
Can relax the first premise to \<^term>0<a in the case of the
natural numbers.
lemma power_less_imp_less_exp: "1 < a ⟹ a ^ m < a ^ n ⟹ m < n"
by (simp add: order_less_le [of m n] less_le [of "a^m" "a^n"] power_le_imp_le_exp)
lemma power_strict_mono [rule_format]: "a < b ⟹ 0 ≤ a ⟹ 0 < n ⟶ a ^ n < b ^ n"
by (induct n) (auto simp: mult_strict_mono le_less_trans [of 0 a b])
lemma power_mono_iff [simp]:
shows "⟦a ≥ 0; b ≥ 0; n>0⟧ ⟹ a ^ n ≤ b ^ n ⟷ a ≤ b"
using power_mono [of a b] power_strict_mono [of b a] not_le by auto
textLemma for power_strict_decreasing
lemma power_Suc_less: "0 < a ⟹ a < 1 ⟹ a * a ^ n < a ^ n"
by (induct n) (auto simp: mult_strict_left_mono)
lemma power_strict_decreasing [rule_format]: "n < N ⟹ 0 < a ⟹ a < 1 ⟶ a ^ N < a ^ n"
proof (induct N)
case 0
then show ?case by simp
next
case (Suc N)
then show ?case
apply (auto simp add: power_Suc_less less_Suc_eq)
apply (subgoal_tac "a * a^N < 1 * a^n")
apply simp
apply (rule mult_strict_mono)
apply auto
done
qed
text Proof resembles that of power_strict_decreasing.
lemma power_decreasing: "n ≤ N ⟹ 0 ≤ a ⟹ a ≤ 1 ⟹ a ^ N ≤ a ^ n"
proof (induct N)
case 0
then show ?case by simp
next
case (Suc N)
then show ?case
apply (auto simp add: le_Suc_eq)
apply (subgoal_tac "a * a^N ≤ 1 * a^n")
apply simp
apply (rule mult_mono)
apply auto
done
qed
lemma power_decreasing_iff [simp]: "⟦0 < b; b < 1⟧ ⟹ b ^ m ≤ b ^ n ⟷ n ≤ m"
using power_strict_decreasing [of m n b]
by (auto intro: power_decreasing ccontr)
lemma power_strict_decreasing_iff [simp]: "⟦0 < b; b < 1⟧ ⟹ b ^ m < b ^ n ⟷ n < m"
using power_decreasing_iff [of b m n] unfolding le_less
by (auto dest: power_strict_decreasing le_neq_implies_less)
lemma power_Suc_less_one: "0 < a ⟹ a < 1 ⟹ a ^ Suc n < 1"
using power_strict_decreasing [of 0 "Suc n" a] by simp
text Proof again resembles that of power_strict_decreasing.
lemma power_increasing: "n ≤ N ⟹ 1 ≤ a ⟹ a ^ n ≤ a ^ N"
proof (induct N)
case 0
then show ?case by simp
next
case (Suc N)
then show ?case
apply (auto simp add: le_Suc_eq)
apply (subgoal_tac "1 * a^n ≤ a * a^N")
apply simp
apply (rule mult_mono)
apply (auto simp add: order_trans [OF zero_le_one])
done
qed
text Lemma for power_strict_increasing.
lemma power_less_power_Suc: "1 < a ⟹ a ^ n < a * a ^ n"
by (induct n) (auto simp: mult_strict_left_mono less_trans [OF zero_less_one])
lemma power_strict_increasing: "n < N ⟹ 1 < a ⟹ a ^ n < a ^ N"
proof (induct N)
case 0
then show ?case by simp
next
case (Suc N)
then show ?case
apply (auto simp add: power_less_power_Suc less_Suc_eq)
apply (subgoal_tac "1 * a^n < a * a^N")
apply simp
apply (rule mult_strict_mono)
apply (auto simp add: less_trans [OF zero_less_one] less_imp_le)
done
qed
lemma power_increasing_iff [simp]: "1 < b ⟹ b ^ x ≤ b ^ y ⟷ x ≤ y"
by (blast intro: power_le_imp_le_exp power_increasing less_imp_le)
lemma power_strict_increasing_iff [simp]: "1 < b ⟹ b ^ x < b ^ y ⟷ x < y"
by (blast intro: power_less_imp_less_exp power_strict_increasing)
lemma power_le_imp_le_base:
assumes le: "a ^ Suc n ≤ b ^ Suc n"
and "0 ≤ b"
shows "a ≤ b"
proof (rule ccontr)
assume "¬ ?thesis"
then have "b < a" by (simp only: linorder_not_le)
then have "b ^ Suc n < a ^ Suc n"
by (simp only: assms(2) power_strict_mono)
with le show False
by (simp add: linorder_not_less [symmetric])
qed
lemma power_less_imp_less_base:
assumes less: "a ^ n < b ^ n"
assumes nonneg: "0 ≤ b"
shows "a < b"
proof (rule contrapos_pp [OF less])
assume "¬ ?thesis"
then have "b ≤ a" by (simp only: linorder_not_less)
from this nonneg have "b ^ n ≤ a ^ n" by (rule power_mono)
then show "¬ a ^ n < b ^ n" by (simp only: linorder_not_less)
qed
lemma power_inject_base: "a ^ Suc n = b ^ Suc n ⟹ 0 ≤ a ⟹ 0 ≤ b ⟹ a = b"
by (blast intro: power_le_imp_le_base order.antisym eq_refl sym)
lemma power_eq_imp_eq_base: "a ^ n = b ^ n ⟹ 0 ≤ a ⟹ 0 ≤ b ⟹ 0 < n ⟹ a = b"
by (cases n) (simp_all del: power_Suc, rule power_inject_base)
lemma power_eq_iff_eq_base: "0 < n ⟹ 0 ≤ a ⟹ 0 ≤ b ⟹ a ^ n = b ^ n ⟷ a = b"
using power_eq_imp_eq_base [of a n b] by auto
lemma power2_le_imp_le: "x⇧2 ≤ y⇧2 ⟹ 0 ≤ y ⟹ x ≤ y"
unfolding numeral_2_eq_2 by (rule power_le_imp_le_base)
lemma power2_less_imp_less: "x⇧2 < y⇧2 ⟹ 0 ≤ y ⟹ x < y"
by (rule power_less_imp_less_base)
lemma power2_eq_imp_eq: "x⇧2 = y⇧2 ⟹ 0 ≤ x ⟹ 0 ≤ y ⟹ x = y"
unfolding numeral_2_eq_2 by (erule (2) power_eq_imp_eq_base) simp
lemma power_Suc_le_self: "0 ≤ a ⟹ a ≤ 1 ⟹ a ^ Suc n ≤ a"
using power_decreasing [of 1 "Suc n" a] by simp
lemma power2_eq_iff_nonneg [simp]:
assumes "0 ≤ x" "0 ≤ y"
shows "(x ^ 2 = y ^ 2) ⟷ x = y"
using assms power2_eq_imp_eq by blast
lemma of_nat_less_numeral_power_cancel_iff[simp]:
"of_nat x < numeral i ^ n ⟷ x < numeral i ^ n"
using of_nat_less_iff[of x "numeral i ^ n", unfolded of_nat_numeral of_nat_power] .
lemma of_nat_le_numeral_power_cancel_iff[simp]:
"of_nat x ≤ numeral i ^ n ⟷ x ≤ numeral i ^ n"
using of_nat_le_iff[of x "numeral i ^ n", unfolded of_nat_numeral of_nat_power] .
lemma numeral_power_less_of_nat_cancel_iff[simp]:
"numeral i ^ n < of_nat x ⟷ numeral i ^ n < x"
using of_nat_less_iff[of "numeral i ^ n" x, unfolded of_nat_numeral of_nat_power] .
lemma numeral_power_le_of_nat_cancel_iff[simp]:
"numeral i ^ n ≤ of_nat x ⟷ numeral i ^ n ≤ x"
using of_nat_le_iff[of "numeral i ^ n" x, unfolded of_nat_numeral of_nat_power] .
lemma of_nat_le_of_nat_power_cancel_iff[simp]: "(of_nat b) ^ w ≤ of_nat x ⟷ b ^ w ≤ x"
by (metis of_nat_le_iff of_nat_power)
lemma of_nat_power_le_of_nat_cancel_iff[simp]: "of_nat x ≤ (of_nat b) ^ w ⟷ x ≤ b ^ w"
by (metis of_nat_le_iff of_nat_power)
lemma of_nat_less_of_nat_power_cancel_iff[simp]: "(of_nat b) ^ w < of_nat x ⟷ b ^ w < x"
by (metis of_nat_less_iff of_nat_power)
lemma of_nat_power_less_of_nat_cancel_iff[simp]: "of_nat x < (of_nat b) ^ w ⟷ x < b ^ w"
by (metis of_nat_less_iff of_nat_power)
end
text Some @{typ nat}-specific lemmas:
lemma mono_ge2_power_minus_self:
assumes "k ≥ 2" shows "mono (λm. k ^ m - m)"
unfolding mono_iff_le_Suc
proof
fix n
have "k ^ n < k ^ Suc n" using power_strict_increasing_iff[of k "n" "Suc n"] assms by linarith
thus "k ^ n - n ≤ k ^ Suc n - Suc n" by linarith
qed
lemma self_le_ge2_pow[simp]:
assumes "k ≥ 2" shows "m ≤ k ^ m"
proof (induction m)
case 0 show ?case by simp
next
case (Suc m)
hence "Suc m ≤ Suc (k ^ m)" by simp
also have "... ≤ k^m + k^m" using one_le_power[of k m] assms by linarith
also have "... ≤ k * k^m" by (metis mult_2 mult_le_mono1[OF assms])
finally show ?case by simp
qed
lemma diff_le_diff_pow[simp]:
assumes "k ≥ 2" shows "m - n ≤ k ^ m - k ^ n"
proof (cases "n ≤ m")
case True
thus ?thesis
using monoD[OF mono_ge2_power_minus_self[OF assms] True] self_le_ge2_pow[OF assms, of m]
by (simp add: le_diff_conv le_diff_conv2)
qed auto
context linordered_ring_strict
begin
lemma sum_squares_eq_zero_iff: "x * x + y * y = 0 ⟷ x = 0 ∧ y = 0"
by (simp add: add_nonneg_eq_0_iff)
lemma sum_squares_le_zero_iff: "x * x + y * y ≤ 0 ⟷ x = 0 ∧ y = 0"
by (simp add: le_less not_sum_squares_lt_zero sum_squares_eq_zero_iff)
lemma sum_squares_gt_zero_iff: "0 < x * x + y * y ⟷ x ≠ 0 y ≠ 0"
by (simp add: not_le [symmetric] sum_squares_le_zero_iff)
end
context linordered_idom
begin
lemma zero_le_power2 [simp]: "0 ≤ a⇧2"
by (simp add: power2_eq_square)
lemma zero_less_power2 [simp]: "0 < a⇧2 ⟷ a ≠ 0"
by (force simp add: power2_eq_square zero_less_mult_iff linorder_neq_iff)
lemma power2_less_0 [simp]: "¬ a⇧2 < 0"
by (force simp add: power2_eq_square mult_less_0_iff)
lemma power_abs: "¦a ^ n¦ = ¦a¦ ^ n" ― FIXME simp?
by (induct n) (simp_all add: abs_mult)
lemma power_sgn [simp]: "sgn (a ^ n) = sgn a ^ n"
by (induct n) (simp_all add: sgn_mult)
lemma abs_power_minus [simp]: "¦(- a) ^ n¦ = ¦a ^ n¦"
by (simp add: power_abs)
lemma zero_less_power_abs_iff [simp]: "0 < ¦a¦ ^ n ⟷ a ≠ 0 n = 0"
proof (induct n)
case 0
show ?case by simp
next
case Suc
then show ?case by (auto simp: zero_less_mult_iff)
qed
lemma zero_le_power_abs [simp]: "0 ≤ ¦a¦ ^ n"
by (rule zero_le_power [OF abs_ge_zero])
lemma power2_less_eq_zero_iff [simp]: "a⇧2 ≤ 0 ⟷ a = 0"
by (simp add: le_less)
lemma abs_power2 [simp]: "¦a⇧2¦ = a⇧2"
by (simp add: power2_eq_square)
lemma power2_abs [simp]: "¦a¦⇧2 = a⇧2"
by (simp add: power2_eq_square)
lemma odd_power_less_zero: "a < 0 ⟹ a ^ Suc (2 * n) < 0"
proof (induct n)
case 0
then show ?case by simp
next
case (Suc n)
have "a ^ Suc (2 * Suc n) = (a*a) * a ^ Suc(2*n)"
by (simp add: ac_simps power_add power2_eq_square)
then show ?case
by (simp del: power_Suc add: Suc mult_less_0_iff mult_neg_neg)
qed
lemma odd_0_le_power_imp_0_le: "0 ≤ a ^ Suc (2 * n) ⟹ 0 ≤ a"
using odd_power_less_zero [of a n]
by (force simp add: linorder_not_less [symmetric])
lemma zero_le_even_power'[simp]: "0 ≤ a ^ (2 * n)"
proof (induct n)
case 0
show ?case by simp
next
case (Suc n)
have "a ^ (2 * Suc n) = (a*a) * a ^ (2*n)"
by (simp add: ac_simps power_add power2_eq_square)
then show ?case
by (simp add: Suc zero_le_mult_iff)
qed
lemma sum_power2_ge_zero: "0 ≤ x⇧2 + y⇧2"
by (intro add_nonneg_nonneg zero_le_power2)
lemma not_sum_power2_lt_zero: "¬ x⇧2 + y⇧2 < 0"
unfolding not_less by (rule sum_power2_ge_zero)
lemma sum_power2_eq_zero_iff: "x⇧2 + y⇧2 = 0 ⟷ x = 0 ∧ y = 0"
unfolding power2_eq_square by (simp add: add_nonneg_eq_0_iff)
lemma sum_power2_le_zero_iff: "x⇧2 + y⇧2 ≤ 0 ⟷ x = 0 ∧ y = 0"
by (simp add: le_less sum_power2_eq_zero_iff not_sum_power2_lt_zero)
lemma sum_power2_gt_zero_iff: "0 < x⇧2 + y⇧2 ⟷ x ≠ 0 y ≠ 0"
unfolding not_le [symmetric] by (simp add: sum_power2_le_zero_iff)
lemma abs_le_square_iff: "¦x¦ ≤ ¦y¦ ⟷ x⇧2 ≤ y⇧2"
(is "?lhs ⟷ ?rhs")
proof
assume ?lhs
then have "¦x¦⇧2 ≤ ¦y¦⇧2" by (rule power_mono) simp
then show ?rhs by simp
next
assume ?rhs
then show ?lhs
by (auto intro!: power2_le_imp_le [OF _ abs_ge_zero])
qed
lemma power2_le_iff_abs_le:
"y ≥ 0 ⟹ x⇧2 ≤ y⇧2 ⟷ ¦x¦ ≤ y"
by (metis abs_le_square_iff abs_of_nonneg)
lemma abs_square_le_1:"x⇧2 ≤ 1 ⟷ ¦x¦ ≤ 1"
using abs_le_square_iff [of x 1] by simp
lemma abs_square_eq_1: "x⇧2 = 1 ⟷ ¦x¦ = 1"
by (auto simp add: abs_if power2_eq_1_iff)
lemma abs_square_less_1: "x⇧2 < 1 ⟷ ¦x¦ < 1"
using abs_square_eq_1 [of x] abs_square_le_1 [of x] by (auto simp add: le_less)
lemma square_le_1:
assumes "- 1 ≤ x" "x ≤ 1"
shows "x⇧2 ≤ 1"
using assms
by (metis add.inverse_inverse linear mult_le_one neg_equal_0_iff_equal neg_le_iff_le power2_eq_square power_minus_Bit0)
end
subsection Miscellaneous rules
lemma (in linordered_semidom) self_le_power: "1 ≤ a ⟹ 0 < n ⟹ a ≤ a ^ n"
using power_increasing [of 1 n a] power_one_right [of a] by auto
lemma (in power) power_eq_if: "p ^ m = (if m=0 then 1 else p * (p ^ (m - 1)))"
unfolding One_nat_def by (cases m) simp_all
lemma (in comm_semiring_1) power2_sum: "(x + y)⇧2 = x⇧2 + y⇧2 + 2 * x * y"
by (simp add: algebra_simps power2_eq_square mult_2_right)
context comm_ring_1
begin
lemma power2_diff: "(x - y)⇧2 = x⇧2 + y⇧2 - 2 * x * y"
by (simp add: algebra_simps power2_eq_square mult_2_right)
lemma power2_commute: "(x - y)⇧2 = (y - x)⇧2"
by (simp add: algebra_simps power2_eq_square)
lemma minus_power_mult_self: "(- a) ^ n * (- a) ^ n = a ^ (2 * n)"
by (simp add: power_mult_distrib [symmetric])
(simp add: power2_eq_square [symmetric] power_mult [symmetric])
lemma minus_one_mult_self [simp]: "(- 1) ^ n * (- 1) ^ n = 1"
using minus_power_mult_self [of 1 n] by simp
lemma left_minus_one_mult_self [simp]: "(- 1) ^ n * ((- 1) ^ n * a) = a"
by (simp add: mult.assoc [symmetric])
end
text Simprules for comparisons where common factors can be cancelled.
lemmas zero_compare_simps =
add_strict_increasing add_strict_increasing2 add_increasing
zero_le_mult_iff zero_le_divide_iff
zero_less_mult_iff zero_less_divide_iff
mult_le_0_iff divide_le_0_iff
mult_less_0_iff divide_less_0_iff
zero_le_power2 power2_less_0
subsection Exponentiation for the Natural Numbers
lemma nat_one_le_power [simp]: "Suc 0 ≤ i ⟹ Suc 0 ≤ i ^ n"
by (rule one_le_power [of i n, unfolded One_nat_def])
lemma nat_zero_less_power_iff [simp]: "x ^ n > 0 ⟷ x > 0 n = 0"
for x :: nat
by (induct n) auto
lemma nat_power_eq_Suc_0_iff [simp]: "x ^ m = Suc 0 ⟷ m = 0 x = Suc 0"
by (induct m) auto
lemma power_Suc_0 [simp]: "Suc 0 ^ n = Suc 0"
by simp
text
Valid for the naturals, but what if 0 < i < 1? Premises cannot be
weakened: consider the case where i = 0, m = 1 and n = 0.
lemma nat_power_less_imp_less:
fixes i :: nat
assumes nonneg: "0 < i"
assumes less: "i ^ m < i ^ n"
shows "m < n"
proof (cases "i = 1")
case True
with less power_one [where 'a = nat] show ?thesis by simp
next
case False
with nonneg have "1 < i" by auto
from power_strict_increasing_iff [OF this] less show ?thesis ..
qed
lemma power_gt_expt: "n > Suc 0 ⟹ n^k > k"
by (induction k) (auto simp: less_trans_Suc n_less_m_mult_n)
lemma less_exp [simp]:
n < 2 ^ n
by (simp add: power_gt_expt)
lemma power_dvd_imp_le:
fixes i :: nat
assumes "i ^ m dvd i ^ n" "1 < i"
shows "m ≤ n"
using assms by (auto intro: power_le_imp_le_exp [OF 1 < i dvd_imp_le])
lemma dvd_power_iff_le:
fixes k::nat
shows "2 ≤ k ⟹ ((k ^ m) dvd (k ^ n) ⟷ m ≤ n)"
using le_imp_power_dvd power_dvd_imp_le by force
lemma power2_nat_le_eq_le: "m⇧2 ≤ n⇧2 ⟷ m ≤ n"
for m n :: nat
by (auto intro: power2_le_imp_le power_mono)
lemma power2_nat_le_imp_le:
fixes m n :: nat
assumes "m⇧2 ≤ n"
shows "m ≤ n"
proof (cases m)
case 0
then show ?thesis by simp
next
case (Suc k)
show ?thesis
proof (rule ccontr)
assume "¬ ?thesis"
then have "n < m" by simp
with assms Suc show False
by (simp add: power2_eq_square)
qed
qed
lemma ex_power_ivl1: fixes b k :: nat assumes "b ≥ 2"
shows "k ≥ 1 ⟹ ∃n. b^n ≤ k ∧ k < b^(n+1)" (is "_ ⟹ ∃n. ?P k n")
proof(induction k)
case 0 thus ?case by simp
next
case (Suc k)
show ?case
proof cases
assume "k=0"
hence "?P (Suc k) 0" using assms by simp
thus ?case ..
next
assume "k≠0"
with Suc obtain n where IH: "?P k n" by auto
show ?case
proof (cases "k = b^(n+1) - 1")
case True
hence "?P (Suc k) (n+1)" using assms
by (simp add: power_less_power_Suc)
thus ?thesis ..
next
case False
hence "?P (Suc k) n" using IH by auto
thus ?thesis ..
qed
qed
qed
lemma ex_power_ivl2: fixes b k :: nat assumes "b ≥ 2" "k ≥ 2"
shows "∃n. b^n < k ∧ k ≤ b^(n+1)"
proof -
have "1 ≤ k - 1" using assms(2) by arith
from ex_power_ivl1[OF assms(1) this]
obtain n where "b ^ n ≤ k - 1 ∧ k - 1 < b ^ (n + 1)" ..
hence "b^n < k ∧ k ≤ b^(n+1)" using assms by auto
thus ?thesis ..
qed
subsubsection Cardinality of the Powerset
lemma card_UNIV_bool [simp]: "card (UNIV :: bool set) = 2"
unfolding UNIV_bool by simp
lemma card_Pow: "finite A ⟹ card (Pow A) = 2 ^ card A"
proof (induct rule: finite_induct)
case empty
show ?case by simp
next
case (insert x A)
from x ∉ A have disjoint: "Pow A ∩ insert x ` Pow A = {}" by blast
from x ∉ A have inj_on: "inj_on (insert x) (Pow A)"
unfolding inj_on_def by auto
have "card (Pow (insert x A)) = card (Pow A insert x ` Pow A)"
by (simp only: Pow_insert)
also have "… = card (Pow A) + card (insert x ` Pow A)"
by (rule card_Un_disjoint) (use finite A disjoint in simp_all)
also from inj_on have "card (insert x ` Pow A) = card (Pow A)"
by (rule card_image)
also have "… + … = 2 * …" by (simp add: mult_2)
also from insert(3) have "… = 2 ^ Suc (card A)" by simp
also from insert(1,2) have "Suc (card A) = card (insert x A)"
by (rule card_insert_disjoint [symmetric])
finally show ?case .
qed
subsection Code generator tweak
code_identifier
code_module Power ⇀ (SML) Arith and (OCaml) Arith and (Haskell) Arith
end